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It is widely acknowledged that faster-growing bacteria are killed
faster by β-lactam antibiotics. This notion serves as the foundation
for the concept of bacterial persistence: dormant bacterial cells
that do not grow are phenotypically tolerant against β-lactam
treatment. Such correlation has often been invoked in the mathe-
matical modeling of bacterial responses to antibiotics. Due to the
lack of thorough quantification, however, it is unclear whether
and to what extent the bacterial growth rate can predict the lysis
rate upon β-lactam treatment under diverse conditions. Enabled
by experimental automation, here we measured >1,000 growth/
killing curves for eight combinations of antibiotics and bacterial
species and strains, including clinical isolates of bacterial patho-
gens. We found that the lysis rate of a bacterial population linearly
depends on the instantaneous growth rate of the population, re-
gardless of how the latter is modulated. We further demonstrate
that this predictive power at the population level can be explained
by accounting for bacterial responses to the antibiotic treatment
by single cells. This linear dependence of the lysis rate on the
growth rate represents a dynamic signature associated with each
bacterium–antibiotic pair and serves as the quantitative foundation
for designing combination antibiotic therapy and predicting the
population-structure change in a population with mixed phenotypes.
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As the oldest and most widely used antibiotics, β-lactams
opened a new era of history in medicine (1) and became a

foundation for subsequent development of antibiotics (2–5). In
the past decade, however, there has been a rapid rise of re-
sistance to β-lactams as well as to all other antibiotic classes (6).
To address this emerging antibiotic crisis, there is an urgent need
for developing treatment strategies to better use existing anti-
biotics, in addition to developing new ones (7). To this end, it is
important to have a quantitative understanding of how bacterial
populations respond to antibiotic treatment under diverse con-
ditions (8–10); however, this understanding is often lacking.
In this study, we examine bacterial antibiotic response to

β-lactams, which represent 65% of all antibiotics used to treat
bacterial infections (11). It is well recognized that faster-growing
bacteria are more susceptible to killing by β-lactams. In other
words, the β-lactam–mediated lysis rate is expected to increase
with the bacterial growth rate, all else being equal. In the ex-
treme case, bacteria can switch into a phenotypically dormant
state (with little or no growth) and exhibit drastically increased
tolerance to β-lactams (12). Having the qualitative notion of the
positive correlation, however, is insufficient for making quanti-
tative predictions of bacterial population dynamics during anti-
biotic treatment. A positive correlation can imply many different
things: It can take the form of any monotonic increasing function
(linear, quadratic, exponential, and so on), and each specific
form will have distinct consequences in the resulting population
dynamics during antibiotic treatment. To date, the quantitative
nature of the positive correlation between growth and lysis rates
is far from being well established. Thorough quantifications are
extremely lacking, considering the nearly universal acceptance of
the correlation.

Over the last several decades, only a few studies attempted to
examine this correlation (13–15). In one, Tuomanen et al. (13)
provided direct evidence for a strict proportionality between
growth rates and lysis rates for bacteria in a balanced growth
environment, as maintained by using a chemostat. However, this
pioneering study left open important questions regarding the
generality and robustness of the observed proportionality. First,
the direct proportionality was established based on measure-
ments of two Escherichia coli strains against two antibiotics, each
tested for three to four growth rates (13), which limited its scope
and statistical robustness.
Second, the measurements were done for bacteria experienc-

ing balanced growth, with the growth environment maintained at
a steady state in a chemostat. In balanced growth, the cell
physiology is, on average, constant over time. In general, how-
ever, as the growth environment changes over time, the growth
rate changes slightly. As such, it is not as “balanced” as one that
is maintained by a chemostat at a steady state. In unbalanced
growth, the bacterial physiology is markedly different from that
during balanced growth. During unbalanced growth, both the
bacterial growth rate and the different aspects of bacterial
physiology, as evident in intracellular gene expression (16) and
metabolism (17–19), continually change over time due to the
interplay among gene expression, bacterial growth, and modu-
lation of the environment (20–22). Moreover, other environ-
mental perturbations are also known to modulate bacterial
physiology substantially (23). Third, still unknown is how a par-
ticular correlation between growth rate and lysis rate for a
population emerges from how single cells respond to antibiotics.

Significance

How fast bacteria grow influences the efficacy of β-lactams,
one of the most commonly used classes of antibiotics. How-
ever, the quantitative nature of this correlation is not well
established. With precise measurements and analyses enabled
by experimental automation, we found a robust relationship
between growth and lysis rates that is generally applicable to
diverse pairs of β-lactams and bacteria. That is, the growth rate
of population serves as a reliable predictor for the lysis rate in
response to a β-lactam. This quantitative correlation lays the
foundation for predicting bacterial population dynamics during
β-lactam treatments. This predictive capability is critical for
designing effective antibiotic dosing protocols, in addressing
the rising antibiotic resistance crisis.
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To address these questions, we used high-throughput, quan-
titative experiments to examine the predictive power of growth
rates for lysis rates for multiple bacterium–antibiotic combina-
tions, under diverse experimental conditions. Using stochastic
modeling, we further provide a coarse-grained mechanistic in-
terpretation of the population-level responses based on single-
cell dynamics. Such a quantitative understanding is critical for
reliable modeling of bacterial dynamics that involve the use of
β-lactams, including the design of engineered gene circuits (24)
and the rational design of antibiotic dosing protocols (25, 26).
We illustrate this by examining the divergent population dy-
namics resulting from different types of correlations between
growth rates and lysis rates.

Results
We measured bacterial growth/lysis dynamics using an auto-
mated robotic liquid handling system (SI Appendix, Fig. S1),
which enables high-throughput collection of growth and lysis
dynamics with high temporal resolution (see Materials and
Methods). Fig. 1A shows time courses of the OD600 of an E. coli
MG1655 culture before and after treatment with 50 μg/mL car-
benicillin (added at 3.5 h). We controlled the growth conditions
such that the OD values used in our study were linearly corre-
lated to the true density, in terms of biomass (SI Appendix, Fig.
S2). Typically, the culture grew approximately exponentially
before the treatment (Fig. 1A). Upon the antibiotic addition, the
OD continued to increase for about 1 h before crashing due to
lysis. We define the growth rate as the rate of increase in total
biomass of the culture, which includes contributions from an
increase in cell number as well as bacterial elongation triggered
by the antibiotic (27). Due to the morphological changes in
single cells caused by β-lactam, an increase in biomass does not
necessarily correspond to an increase in cell number. For the
same reason, the change in the biomass due to growth and

death provides more direct quantification of the bacterial
population dynamics during β-lactam treatment. In this context,
direct measurement of viable cell counts could be misleading,
as well as being too technically tedious to allow generation of
growth/lysis dynamics with high temporal resolution. Indeed,
numerous studies have used OD measurements to quantify
population and gene expression dynamics in bacteria or yeast
(19, 27–30).
The growth and lysis of a bacterial population can be de-

scribed by an ordinary differential equation: dN/dt = G·N − L·N,
where N is the total biomass, G is the growth rate, and L is the
lysis rate. The equation can be rearranged as: dln(N)/dt = G − L;
that is, the time derivative of the log-transformed cell density
reflects the combined effects of growth and lysis over time. As
OD is proportional to N (SI Appendix, Fig. S2D), we have:
dln(N)/dt = dln(OD)/dt; thus, all calculations of growth or lysis
rates can be done with OD values. For each growth/lysis curve, we
determined this derivative as a function of time by filtering the
data using a median filter and then taking the linear regression of
every data point obtained in a moving 1-h time window, to reduce
the impact of variations caused by experimental operation.
Before antibiotic treatment, we assume that there is no in-

trinsic lysis (L = 0); thus, dln(OD)/dt = G, which corresponds to
the instantaneous growth rate at the moment of antibiotic ad-
dition. After adding the β-lactam, the rate of change in OD is a
combination of continued biomass accumulation and lysis:
dln(OD)/dt = G − L. Based on previous observations, we assume
that the instantaneous preantibiotic growth rate remained con-
stant (31, 32) after the addition of the antibiotic: L = G −
(dln(OD)/dt); that is, L is determined as the difference between
the OD curve and what we would have expected if the culture had
continued to grow at the preantibiotic growth rate. In general, L is
a function of time. In our analysis, we aimed to determine whether
the instantaneous preantibiotic growth rate could predict the
maximum lysis rate following treatment with an antibiotic. Even if
all cells are lysed, the accumulation of their debris would provide a
baseline OD value. If there were no background OD value, the
lysis rate would asymptotically approach a constant. In the
presence of the background OD value, the lysis rate exhibits a
maximum, in general. This property makes the maximum lysis
rate a unique metric to approximate the lysis dynamics after
antibiotic treatment, as illustrated from our model simulation (SI
Appendix, Fig. S8).
To modulate the instantaneous growth rate, we varied the

richness of the growth media (SI Appendix, Fig. S3A), changed
growth temperatures (SI Appendix, Fig. S3 A–C), used sublethal
concentrations of ribosome-inhibiting antibiotics to inhibit bac-
teria growth (SI Appendix, Fig. S3 D and E), and controlled the
timing of antibiotic addition. Remarkably, regardless of how the
growth rate was modulated, our results revealed a linear corre-
lation between the growth rate and the corresponding lysis rate
(Fig. 1B). Changing these parameters affects different aspects of
bacterial physiology (16–23). However, despite the fundamental
differences in how the growth rates of the population were var-
ied, the correlation between growth and lysis rates was main-
tained. Additional analysis and the growth curves corresponding
to each data point are shown in SI Appendix, Fig. S4 B–D.
In contrast to a previous observation (13), however, the linear

correlation is not strictly proportional—the y-intercept is typi-
cally not zero. The slope becomes smaller and the y-intercept
becomes larger with increasing antibiotic concentrations (Fig. 2).
Our results suggest that, at a low concentration of the antibiotic,
the growth rate must exceed a threshold to trigger lysis. At a
higher antibiotic concentration, however, the cells would lyse,
even at a very small growth rate, indicating basal-level killing by
β-lactams. Consistent with this notion, our microscopy experi-
ment (Movies S1–S3) shows that even extremely slow-growing
cells were lysed at a high antibiotic concentration (Movie S2).

BA

Fig. 1. The growth rate predicted the β-lactam–mediated lysis rate, re-
gardless of how the overall growth rate was modulated. (A, Top) Time
courses of bacterial growth and lysis dynamics over time. tA indicates the
time when the antibiotic was added. Four replicates are shown. (A, Bottom)
The rate of change calculated from the growth curves. Before antibiotic
treatment, G is defined as the instantaneous growth rate. The lowest point
of the curve corresponds to the sum of preantibiotic growth rate and
maximum lysis rate (L). (B) Growth modulation with various parameters,
including nutrient concentration (N), temperature (T), and second antibiotic
concentration (A). A robust, linear correlation emerges between growth and
lysis rates collected from various modes of growth-rate modulation. The
linear fit has a slope of 1.62, a y-intercept of 0.48, and an R2 value of 0.7903.
CM, chloramphenicol; Kan, kanamycin.
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There was negligible growth or death in the absence of antibiotic
(Movie S3). In contrast, fast-growing cells were quickly killed
(Movie S1). This property is consistent with the observation that,
at a sufficiently high concentration, a β-lactam can still kill per-
sisters, albeit at a much reduced rate (12).
We then measured the correlation using combinations of dif-

ferent β-lactams and different bacterial species or strains, in-
cluding clinical isolates of bacterial pathogens that express
extended-spectrum β-lactamases (ESBLs). When testing with
ESBL-producing pathogens, we supplemented the media with
20 μg/mL clavulanic acid to inhibit β-lactamases in order to prevent
enzyme-mediated degradation of the antibiotic (33). We verified
that ESBL-producing pathogens became sensitive to β-lactams in
the presence of the Bla inhibitor (SI Appendix, Fig. S7). For each
antibiotic–bacterium combination, the linear correlation remained
(Fig. 3), indicating its general applicability. However, for different
combinations, the linear correlation varied in terms of slope and
intercept, which can be considered a quantitative signature for a
specific antibiotic–bacterium combination.
Given the generality of the linear correlation, its core un-

derlying mechanism is likely insensitive to molecular mechanisms
associated with specific strains/species or growth conditions. In-
stead, it is likely due to general dynamic features associated with
a variety of β-lactams and gram-negative bacteria. For individual
cells, it has been shown that the biomass continues to increase
for some time at the same rate upon addition of a β-lactam,
before the cell lyses (31, 32). Moreover, the lysis requires the
assembly of the cell division machinery (34), which implies
preferential lysis just before a cell would otherwise divide.
To examine whether such single-cell responses could account

for the population-level linear correlations between the growth
rate and the lysis rate, we developed a parsimonious stochastic

model (SI Appendix, Model development). Similar approaches
have been adopted to map single-cell growth dynamics and
population fitness in other contexts (35, 36). Our model accounts
for the effects of cell-to-cell variability in size and growth rate in
the absence or presence of an antibiotic. Briefly, we adopted a
noisy linear map (37) to generate the initial size distribution
before adding the antibiotic. Upon antibiotic addition, the cell
size will typically become larger than usual before lysis (SI Ap-
pendix, Fig. S6 A and B). In addition, we assume that the cells
continue to elongate upon antibiotic addition (38, 39), that the
rates at which cells elongate remain the same as pre–antibiotic-
treatment rates (38), and that the probability of lysis is higher
when cells are about to divide (34). This simple stochastic model
predicts a strict proportionality between the growth rate and the lysis
rate (SI Appendix, Fig. S6C). This prediction provides a parsimo-
nious interpretation of strict proportionality observed for bacteria
during balanced growth but does not account for the results under
more general conditions (Figs. 1 and 3). Instead, assuming a basal-
level probability of lysis independent of biomass accumulation or
cell division can lead to a linear (but nonproportional) de-
pendence, as observed in experiments with increasing antibiotic
concentrations (SI Appendix, Figs. S4 and S6 D–F). Specifically,
increasing antibiotic concentration further increases the proba-
bility that a cell exhibits lysis at a slow growth rate and, thus, re-
sults in a linear correlation different from previously observed
strict proportionality (13). The necessity to invoke this additional
assumption underscores the complexity of potential molecular
mechanisms underlying the response of single cells to β-lactams.
This additional assumption also constrains the molecular mecha-
nisms that underlie the single-cell response to a β-lactam.
Despite the prevalence of ESBL-producing pathogens, β-lac-

tams can be inadvertently used as first-line antibiotics before full
diagnosis reveals the composition of an infection consisting of
these pathogens. This practice could influence the structure of
an infecting population consisting of subpopulations with dif-
ferent growth rates (35, 40). To gain insight into such selection
dynamics, we developed a kinetic model to examine the response
to β-lactam treatment by a mixed population consisting of 100
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Fig. 2. Antibiotic dose-dependent correlations between growth and lysis
rates in E. coli MG1655. (A–C) E. coli MG1655 strain was treated with 10, 20,
or 50 μg/mL carbenicillin at various time points. The growth condition was
kept the same otherwise. The linear correlations shift according to specific
antibiotic concentrations. At 10 μg/mL carbenicillin, there is a threshold for
growth rate for lysis to occur. At 20 and 50 μg/mL carbenicillin, there is a
basal-level lysis rate (by extrapolation), even when the growth rate is 0,
which increased with the antibiotic concentration. (D–F) Simulation results
capture the qualitative trends in the experimental data. The average growth
rate varies from 0.5 to 1.5 per hour. Parameter a increases with increasing
growth rates: a’ =a, b= 2.5, b’ = 5b, λ= 0.2, σ1 = 0.548, σ’1 = 5.0, σ2 = 0.0344,
σ3 = 0.2, Phigh =0.1, Pb1 = 0.1. (D) Pb2 = 0. (E) Pb2 =0.02. (F) Pb2 = 0.03. See SI
Appendix, Model Development for a detailed description of the stochastic
model.
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Bla-producing subpopulations, each with a different growth rate
(Fig. 4A; also see SI Appendix,Model development). Upon addition
of a β-lactam, each subpopulation would lyse at a rate depending
on its growth rate. The released Bla would collectively degrade the
β-lactam, allowing surviving cells to recover (Fig. 4B). Our simu-
lations indicate that this interplay among differential lysis rates,
β-lactam degradation, and subsequent competition could drasti-
cally affect the final population structure, depending on how the
lysis rate depends on the growth rate (Fig. 4 C–E). In general,
treatment with a β-lactam leads to selection of a subpopulation
with intermediate growth rates. However, a low antibiotic con-
centration, which only lyses cells growing at a sufficiently high rate
(Fig. 2), would lead to the strongest enrichment of slow-growing
cells, but not nongrowing cells (Fig. 4C). A higher antibiotic
concentration would lead to selection against both slow-growing
and very fast growing cells (Fig. 4 D and E). Especially, in the case
where there is a high basal lysis rate, there is a sharp selection for
subpopulations with a narrow range of intermediate growth rates
(Fig. 4E). These simulation results underscore the critical im-
portance of having precise quantification between the lysis and
growth rates for different drug–bacterium combinations for pre-
dicting population change upon antibiotic treatment.

Discussion
In general, biological processes are incredibly complex due to the
vast number and diversity of interactions among biomolecules in

a cell, among different cells in a community, and between cel-
lular communities and their environments. Despite this com-
plexity, however, simple, quantitative rules often emerge when
biological systems are examined at appropriate levels of ab-
straction. Examples include linear correlations underlying cell-
size homeostasis in bacteria (37, 41, 42), scaling properties of the
drug responses by bacteria and cancer cells (43), correlation
between the “entropy of population” and the potential for
emergence of order in space (44), ranking of quorum sensing
modules according to their sensing potential (45, 46), and the
growth laws resulting from dynamic partitioning of intracellular
resources (47, 48). A key property of these simple rules is that
they lump together contributions of multiple lower-level inter-
actions and yet have predictive power for higher-level dynamics
(49, 50).
The linear correlation between growth rates and β-lactam–

mediated lysis rates represents another example of such simple
rules. Although this correlation was partially established pre-
viously, until it was examined for broad applicability, as we have
demonstrated here, its utility for quantitative reasoning was
limited. Given the drastic differences in bacterial physiology
among different growth conditions—balanced or unbalanced
growth and modulation of growth rates by nutrients, stressors, or
temperature—it is remarkable that this linear correlation is
maintained. Our measurements provide the concrete foundation
for the qualitative statement that faster bacteria are killed faster,
and reveal apparently subtle differences that have drastic dy-
namic consequences. For instance, as illustrated in Fig. 4, the
exact nature of the linear correlation can substantially affect the
final structure of a population exposed to an antibiotic. Indeed,
the quantitative mapping between single-cell growth dynamics
and population fitness for different biological problems has been
highlighted previously (35). This point has implications for the
quantitative prediction of population or evolutionary dynamics
of mixed populations (due to genetic or phenotypic variability)
(25, 51–54) when treated by β-lactams. At the lower level, the
quantitative property of the linear correlations imposes a fun-
damental constraint on the nature of the biophysical processes
underlying the response of single bacteria to β-lactams. For in-
stance, whether the linear correlation has a positive y-intercept
dictates the probability by which nongrowing and growing cells
are killed (SI Appendix, Fig. S6).
In addition to understanding how bacterial populations re-

spond to β-lactams alone, our measurements can help evaluate
the efficacy of combination treatment involving β-lactams. A
rationale for combination therapy is that it would target different
machineries of the bacterial cell and result in a more synergistic
efficacy, with reduced chance for emergence of resistance (55).
Indeed, a proper combination using a β-lactam with a Bla in-
hibitor would be effective in treating ESBL-producing bacteria
(SI Appendix, Fig. S7), one of the World Health Organization’s
antibiotic-resistant priority pathogens. However, the outcomes of
combination therapy are often variable (56). For example, a
combination consisting of a β-lactam and an antibiotic inhibiting
growth (e.g., aminoglycoside and macrolide) has demonstrated
limited effectiveness (57). This lack of efficacy might be due to
the antagonistic interaction between the two types of antibiotics:
a sublethal concentration of the non–β-lactam could protect the
population against killing by a β-lactam, by reducing the pop-
ulation growth rate.

Materials and Methods
Bacterial Strains, Growth Media, and Culturing Conditions. A single colony of E.
coli cells (MG1655 unless noted otherwise) was inoculated from an agar
plate into 4 mL of LB media in a test tube that was placed in a 37 °C shaker
overnight. The overnight cell culture was washed twice in M9 media without
glucose or casamino acid. The OD600 of the washed culture was calibrated to
achieve 0.5 in fresh M9 media without glucose or casamino acid. For each

A 

0.5 1 1.5
0

1

2

3

0.5 1 1.5
0

1

2

3

0.5 1 1.5
0

1

2

3

G 

E
nr

ic
hm

en
t !"

Growth 
rate 

Ly
si

s 
ra

te
 

!" !"

Scenario 1 Scenario 2 Scenario 3 C D E 

Initial 

Final 

0 20 40

10-5

100

0 20 40

10-5

100

0 20 40

10-5

100

0 20 40

10-5

100

0 20 40

10-5

100

0 20 40
10-2

10-1

100

0 20 40
10-2

10-1

100

0 20 40
10-2

10-1

100

0 20 40
10-2

10-1

100

0 20 40
10-2

10-1

100

0 1 2
0

0.5

1

1.5

Antibiotic 
treatment 

+[A] 

-[A] 

0 1 2
0

0.5

1

1.5

P
op

ul
at

io
n 

de
ns

ity
 

G 

D
en

si
ty

 

Time 

Faster growth exhibited by ESBL subpopulation B 
G 

P
op

ul
at

io
n 

de
ns

ity
 

Fig. 4. Predicting the change in the population structure in a Bla-producing
population consisting of subpopulations with varying growth rates. Bacterial
subpopulations exhibit a wide range of growth rates due to genetic and
phenotypic variations. The change in the population structure has a partic-
ular importance when populations exhibit collective tolerance against
β-lactams (8, 25). (A) Schematic of the growth-rate (G) distribution of the
bacterial population. (B) Growth/death dynamics of sample subpopulations,
each with a different maximum growth rate. A, antibiotic. (C–E) Enrichment
of each bacterial subpopulation when assuming different correlations be-
tween growth and lysis rates. This simulation result indicates that the
quantitative property of the correlation can drastically influence the effects
of antibiotic treatment on the population structure of an infecting population.
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growth and lysis experiment, cells were diluted into fresh M9 media with
varying concentrations of limiting nutrient to modulate their growth rates.
For our base case, we varied the amount of casamino acids from 0.002 to
0.5% as the limiting nutrient, with a fixed amount of glucose of 0.4% (wt/vol).
Cells were diluted 100-fold into fresh growth media before the start of
each experiment.

Automated Liquid Handling System. A liquid handling system (Freedom
EVO100; Tecan) and a plate reader (Infinite 200; Tecan) allowed us to conduct
semiautomated, high-throughput measurements of growth and lysis dy-
namics of bacterial cultures. Custom computer codes based on the Tecan
software were developed to dispense growth media and bacterial culture
into designated wells on a 96-well plate. A typical automated experimental
protocol would conduct the following tasks:

i) Distribute fresh M9 media supplemented with 0.4% glucose into 15-mL
tubes.

ii) Add varying amounts of casamino acids or other variable nutrients or
antibiotics to the 15-mL tubes.

iii) Add cells to the 15-mL tubes.
iv) Aliquot the media from 15-mL tubes to a 96-well plate.
v) Move the 96-well plate into a plate reader (Infinite 200).
vi) Incubate at 30 °C and take OD measurements at 10-min intervals for

∼3 to 5 h.
vii) Move the 96-well plate back onto the stage and add antibiotics to each

sample on the plate.
viii) Move the 96-well plate back into the plate reader.
ix) Continue making OD measurements for ∼14 h.

Cell Growth/Lysis Observed Under Microscope. One milliliter of overnight cell
culture (MG1655, constitutively expressed GFP reporter on chromosome) was
collected and washed three times with PBS. Next, we resuspended the cells in
1 mL of M9 media without glucose or casamino acids (diluted 1:50 into the
same medium) and loaded the culture onto the microfluidic device. M9 salts
were supplemented continuously at 12 μL/h. We monitored the cells under a
microscope (Nikon Ti-E microscope with 100× objective) for 150 min to en-
sure cells are not growing. Next, we changed the medium to the M9 salts
with 150 μg/mL carbenicillin using a programmable syringe pump (Pump 11
Elite; Harvard Apparatus; flow rate, 12 μL/h). For the first control, cells were
washed, resuspended in M9 medium supplemented with 0.4% glucose and
2% casamino acids, diluted 1:500 into same medium, and loaded onto the
microfluidic device. The M9 medium was flowed continuously at 12 μL/h.
The cell growth was monitored 150 min before medium was changed to the
M9 medium with 150 μg/mL carbenicillin (flow rate, 12 μL/h). For the second
control, cells were washed, resuspended in M9 media without glucose or
casamino acids, diluted 1:50 into same medium, and loaded onto the
microfluidic device. The M9 medium was supplemented continuously at
12 μL/h. The design of the microfluidic device was published previously (58).
The device was kept in a 37 °C chamber. The scale bars in Movies S1–S3 re-
present 10 μm, and the unit of time is hours.
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